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1 Introduction

For a clinician, the most important questions a patient has usually are “What is the
problem with me?”, “What can you do about it?”, and “Will I get better?”. These three
questions are related to the core themes of clinical epidemiology, namely, diagnosis,
therapy, andprognosis, andmethods to answer the last questionwill be the focus of this
paper. However, informing the patient about the likely progress of his or her disease,
i.e., patient-centered prognosis, is only one reason why prognostic studies may be
important (Harrell et al., 1996). In awider scope, the generation of accurate predictions
in medical applications may help to better understand the underlying disease process,
to inform clinical decisions, patients and family, as well as to define patient groups who
are at a special risk (Altman and Lyman, 1998; Altman and Royston, 2000; Simon
and Altman, 1994). Given this important role of biomedical prognosis, it comes as
no surprise that a large body of literature on methods for developing multivariate
predictors has been published. These include well-known regression approaches like
the logistic regression. In addition, over the last decades, many new methods and
combinations of them have been developed that can be utilised for anew tackling the
problem of predicting patient outcomes.

All of these methods can be summarised under the term machine learning which
has been nicely defined byWitten and Frank (2005). They consider “machine learning
as the automated computer process of obtaining the best fitting model to a dataset”.
The chosen family of models is often highly parameterised and non-linear in the
parameters, and the best fitting model is the one which minimises the chosen error
criterion. As a special case, they defined statistical learning as machine learning in
which the chosen error criterion reflects the distribution of errors of the data from
the model.

As described below, interpretability of the model is an important criterion for the
acceptance by clinicians. Therefore, many clinical epidemiologists still prefer the use
of standard approaches. Nevertheless, the use of other machine learning algorithms
has widely increased in the medical literature over the past decade at least in some
selected areas. However, it seems that the broad familiarity with the newer approaches
among medical statisticians is still wanting. The topic is, however, well-known to
medical informaticians. An indication of this difference is that at the latest meeting of
the International Medical Informatics Association 2004 in San Francisco, an entire
sessionwas devoted to “MachineLearning inClinicalDecisionMaking”, and a tutorial
on “Machine Learning Methods for Decision Support and Discovery” was offered.
By comparison, nothing comparable was organised at the last Annual Conference of
the International Society for Clinical Biostatistics 2006 in Geneva, Switzerland, or the
XXIIIrd International Biometric Conference 2006 in Montreal, Canada.

The aim of this tutorial is to fill this gap and present an overview of some of
the newer algorithms. For the application of a prognostic model, different criteria
are relevant (see Section 6 for a detailed discussion). For example, in addition to
the accuracy of the prognosis, the ease of application and computational time as
well as the clinical interpretability may have to be considered. This already points to
the fact that not one model will fit all applications and therefore we, by no means,
aim at showing the superiority of any of the methods over any other. Instead, the
focus will be on the description of methods that allow a patient-centered prognosis
for binary outcomes in the medical setting. The practical use will be illustrated using
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data from a comprehensive prognostic factor study on the outcome of patients who
have suffered from acute ischemic stroke and which has been published in great detail
previously (Weimar et al., 2002, 2004; German Stroke Study Collaboration, 2004).
The different algorithms will be evaluated with regard to practicability and clinical
interpretability, and methods for systematically comparing prognostic methods will
be presented. Because of space limitations for this tutorial, we will not discuss the
problem of missing data in detail but assume data missing completely at random so
that we eliminate incomplete case records from the data set. However, we comment
on this topic in the discussion.

The mathematical sophistication of the several algorithms presented here varies
considerably. Thus classification trees are perhaps easiest to understand, support
vector machines probably hardest, while bagging, boosting and random forests are
intermediate. This shifting level of difficulty is reflected in our presentation. The further
questions of efficiency and optimality, for example large sample Bayes consistency is
inevitably an active area of statistical research.Weprovide someguide to this literature,
only, and do not attempt here a systematic survey or detailed analysis.

This tutorial is organised as follows:We begin by specifying the general framework
of medical prognostic studies in Section 2. Section 3 describes the data set used for
illustration. In this section, we also describe the logistic regression model (Section 3.5)
which we used in the primary publications on the available data. We specifically chose
the logistic regression model for comparisons because it is the best known and most
frequently applied approach (Concato et al., 1993) in the biomedical literature for
making yes/no predictions. It is considered the standard statistical learning machine
andoften used as benchmark for the comparisonwith new learningmachines. Section 4
then introduces learning machines based on single classifiers, where Classification and
Regression Trees (CART) (Breiman et al., 1984; Zhang and Singer, 1999) as well as
Support Vector Machines (SVMs) (Cristianini and Shawe-Taylor, 2000; Noble, 2006;
Schölkopf and Smola, 2002) will be considered. We chose these methods specifically
because CART are often used as classifiers in ensembles, and because SVMs are
becoming popular in a wide variety of biological applications. Section 5 presents the
combination possibilities of single learning machines to ensembles. Here, the majority
vote across different machines is usually taken for classifying subjects. In Section 6,
we finally compare the different algorithms. Code pieces based onR software packages
(R Development Core Team, 2005) are given along with the described methods.

2 General framework

A series of well-known papers (Altman and Lyman, 1998; Altman and Royston, 2000;
Simon and Altman, 1994; Drew et al., 1999) has described reasons for developing
prognostic models in medical applications, the important methodological challenges
and guidelines for the conduct ofmedical prognostic studies.However, the principles of
good study design, analysis and reporting are still less well appreciated for prognostic
factor studies than for controlled clinical trials. For example, standards are available
on the reporting of results from logistic regression analysis (Bagley et al., 2001)
but, in contrast to the recommendations, the assumptions made in the analysis are
not commonly reported (Ottenbacher et al., 2004). We therefore briefly summarise
important principles for developing a prognostic model and sketch the different
approaches for the validation of a prognostic model.
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2.1 Developing the prognostic model

The first step to develop a prognostic model is to prospectively collect data from
patients who are well defined by inclusion and exclusion criteria. In some situations,
only a retrospective inclusion of the patients might be feasible; however, this may
lead to more incomplete data sets and to biased assessments of the outcome
(see, e.g., Sackett et al., 2000). After a sufficiently long and complete follow-up
of these patients, the outcome is assessed, if possible blindly. This means that the
clinician who evaluates the outcome is unaware of the patient’s prognostic factors.
In addition to the clinically relevant outcome and possible prognostic factors that
are of specific interest in the respective study, all other important known prognostic
factors have to be measured. However, although it is important that the model
includes all relevant variables, at the same time it must not include more variables
than are justified for a given sample size (Bagley et al., 2001). A reasonable standard
rule of thumb is that the Events Per Variable (EPV) should be greater or equal
to 10 (see, e.g., Simon and Altman, 1994; Bagley et al., 2001). For dichotomous
outcomes, the number of events refers to the number of patients in the less frequent
category. The required sample size does, however, not only depend on the number
of variables. Instead, it depends on the study design, which in turn is determined by
the aim of the study.

Some further specific issues include the question of how to adequately model a
continuous variable (Royston et al., 2000; Royston and Sauerbrei, 2004) and the
necessity for a stringent study protocol in advance of conducting the study (Simon and
Altman, 1994; Drew et al., 1999).

After data collection, the resulting sample, comprising the training data set or
learning data set is used to develop a prognostic model. The goal of this is to yield an
algorithm that uses values from prognostic factors to accurately predict the patient’s
outcome. To evaluate the performance of the model, several measures can be applied
(Harrell et al., 1996):

• Predictive accuracy: How well does the predicted event for an individual match
the observed event?

• Calibration: How well does the predicted rate of events match the observed
event rate?

• Discrimination: How well does the model distinguish between patients with
different outcomes?

As a measure of predictive accuracy, we utilise the concordance index, also known
as hit rate, which is defined as the proportion of patients in whom predictions
and outcomes are concordant. Complementary to this, the overall error fraction
is given by the proportion of patients with discordant prediction and observation.
Concordance indices may also be calculated within certain patient groups instead
of overall. If a binary outcome is considered, this results in the determination of
sensitivity and specificity which estimate the probability that a patient belonging to
one or the other outcome group is classified correctly. In addition, given estimated a
priori probabilities for the outcome groups, positive and negative predictive values
might be estimated.
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2.2 Validating the prognostic model

After having thus obtained a satisfying prognostic model with high accuracy, the next
question to answer is: How well does the model fare with patients collected from a
different population than the original one? Different reasons for why this transfer
might not succeed have been described, and Altman and Royston (2000) identified the
following three:

• overoptimistic assessment of the predictive performance due to data-dependent
aspects of model building

• weaknesses in study designs which can include no clear inclusion and exclusion
criteria, missing data, or inadequate sample size

• models may not be transportable because of differences in sample compositions.

The first issue points to the fact that the data is utilised for both derivation of parameter
estimates and testing model performance. Since the same data is used for both steps,
the estimated performance of the model will often be overly optimistic, thus overfit.
Flaws in the study design are difficult to address since these can only be corrected
before any data is collected. However, even a careful study design does not guarantee
too often that the prognostic model can be reliably transported to different data sets.
Altman and Royston (2000) pointed out that different case-mix of the populations
could lead to different model performances, if not all important prognostic variables
are included in themodel.Hence, as itwill neverbe certain that every important variable
is considered, it always has to be questioned whether the patients in the original sample
were sufficiently similar to the patients for whom the prediction is made.

As a consequence of these problems, it has to be shown that a developed model
performs reliably and sufficiently well in data sets different from the one it was
developed. This means that the model must be validated before it can be utilised
in practice. As a very general rule, this is achieved by making use of two data sets
with the first being the training data in which the model is developed. The second
data set, the test data, is then utilised to estimate the true predictive performance
of the model. Depending on the specific data sets available, internal, external and
temporal validation have to be distinguished. The different approaches for validating
a prognostic model have been described in detail by Altman and Royston (2000);
we have recently illustrated the different procedures using the data from the German
Stroke Collaboration (König et al., 2007).

Internal validation uses only the training data to estimate the reproducibility
of the model. This data set is artificially separated into disjoint data sets which
then play the role of training and validation data. Approaches for this separation
of the data set include sample splitting, k-fold Cross-Validation (CV), leave-one-out
CV, leave-one-center-out CV and bootstrapping. Bootstrapping procedures (see, e.g.,
Hastie et al., 2003; Simon et al., 2003) are an integral part of some ensemble methods
like bagging and will be described below.

The major difference between internal validation on the one hand and temporal
and external validation on the other is that whereas internal validation as above utilises
only one sample, for temporal and external validation additional independent data sets
are appropriated, the test data. Estimating the error fraction in a temporal validation
data set is similar to assessing the reliability of the model. That is, an estimate of the
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precision of the estimated predictive performance can be obtained. To be specific, the
performance of the model is evaluated in new patients who are subsequently collected
in the same study centers as before. Hence, the patients in this data set differ from the
previous ones primarily with respect to a later time point of recruitment.

External validation is the most stringent validation of the clinical prognostic
model. It is best suited to answer the question concerning the validity of the model,
that is, whether the model actually evaluates what it is intended to evaluate. Here, it
is required that the test data stem from patients who were recruited from different
study centres than in the training data. An externally validated model therefore fares
best with regard to generalisability, meaning robustness and broader usefulness of the
results.

3 The data

Before describing different approaches to develop prognostic models, a short overview
of the data used here is now given. The data were obtained from the German
Stroke Data Bank funded by the Stiftung Deutsche Schlaganfall-Hilfe (German
Stroke Foundation) and the German Stroke Study Collaboration funded by the
Bundesministerium für Bildung und Forschung (German Ministry of Education and
Research) in order to accurately predict the status of patients who had suffered from
an acute ischemic stroke.

3.1 Endpoint

While the number of acute stroke trials to improve stroke treatment has increased
considerably during the past decade, comprehensive knowledge about the impact
of prognostic factors on outcome after acute ischemic stroke has been lacking
because previous studies were mostly based on only exploratory analyses using small
sample sizes. Of the many outcome parameters in use, guidelines acknowledge the
importance of considering functional dependence and include impairments, disability
andhandicap experienced by the patient, in addition tomortality due tomajor bleeding
complications (CPMP, 2000). The most commonly applied standardised outcome
scale to assess functional dependence in stroke research is the Barthel index (BI)
(CPMP, 2000; Mahoney and Barthel, 1965; Roberts and Counsell, 1998). It evaluates
individual abilities for example in mobility or personal hygiene, that are immediately
important to the patient and is considered an outcome being clinically relevant to
the patient (Schuntermann, 1996). The BI can take values between 0 (total functional
dependence) and 100 (total functional independence), and in practice, a suitable
cut-off value is used to identify patients with complete restitution. We decided to use
theBI assessed after 100 days as primary endpoint since a follow-up interval of 100 days
represents the time span considered appropriate for therapeutic trials (CPMP, 2000).
Furthermore, it is a trade-off to ensure that both rehabilitation is terminated and
drop-out rate is kept low.

3.2 Possible prognostic factors

Prior to data assessment, we conducted a systematic literature review for independent
prognostic factors for outcome after ischemic stroke in 1998. Based on these results
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and the clinical judgement on the impact of localisation of infarction, 49 variables
assessable within the first 72 hours after admission were selected for further
investigation. This time frame represents a compromise between a valid and accurate
assessment of the variables of interest on one hand and an early prognosis on the other.
Detailed information on the literature search, the variable selection process, and the
final list of variables is available from the website http://www.uni-duisburg-essen.
de/neurologie/stroke/free/lit_eng1.html.

3.3 Training data set

Details on data assessment and management have been published previously (Weimar
et al., 2002, 2004; König et al., 2003). In brief, data were collected in 1998 and
1999 prospectively in accordance to an extensive manual. All participating hospitals
had an acute stroke unit. Seven of 23 centres (Essen, Benjamin Franklin Berlin,
Frechen, Leipzig, Minden, München-Harlaching (only 1998), München-Großhadern
(only 1998)) fulfilled pre-specified inclusion criteria by including more than 90% and
following up more than 80% of the patients.

Ischemic stroke was defined as a focal neurological deficit of presumably vascular
origin lasting>24 hours and excluding primary hemorrhage on initial cerebral imaging
(Walker et al., 1981). In total, 1754 patients with ischemic stroke met the following
criteria and were included in the analyses: No serious functional impairment (Rankin
Scale <4) before the event to ensure that patients were functionally independent to a
certain degree (CPMP, 2000), admission within 24 hours after stroke, not intubated
during first 72 hours to allow for a valid assessment of all interesting variables, and
survival in the first three days.

Data included all variables that had been identified in our literature search in
addition to infarct localisation which had been chosen by clinical judgement. Of the
1754 patients, 1038 (59.2%) were men. Mean age of patients at baseline was 68.1 years
(SD 12.7). The outcome was assessed on the BI within 80–150 (median 96) days after
the event or by confirmation of death within 120 days after initial stroke. To identify
patients with complete restitution as advocated for clinical trials (CPMP, 2000),
a cut-off value of BI ≥ 95 (complete restitution) vs. <95 (incomplete restitution or
mortality) was used. 1025 patients (58.4%) were completely restituted, 563 patients
(32.1%) were incompletely restituted, and 166 patients (9.5%) had died. One hundred
and eight patients (6.1%) had received thrombolysis. Complete data was available in
1737 (99.0%) of the patients.

All patients gave informed consent if their personal data were to be transferred
to the data management centre. Aspects of data safety of the Stroke Database were
considered to be clarified by the responsible data protection officer.

3.4 Test data set

Enrollment of patients started on 1st, February, 2001, and was terminated on 15th,
March 2002, after the calculated required number of patients had been reached
(Weimar et al., 2002, 2004; König et al., 2003). Four neurologic departments
participating in the initial study also took part in the validation study (Essen,
München-Harlaching, München-Großhadern, Minden). These allow a temporal
validation (König et al., 2007). Nine neurologic departments participated in the
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validation study only (Charité Berlin, Bielefeld, Bonn, Jena, Magdeburg, Rostock,
Saarland, Stuttgart, Ulm) and represent centres for external validation (König et al.,
2007).

All participating hospitals operate an acute stroke unit. On admission, the treating
physician reported the admission of every stroke patient via fax to the coordinating
centre. According to the study protocol (König et al., 2003), we excluded all patients
from those centres with less than 75% follow-up or a drop-out rate of >10%.
The drop-out rate was defined as the proportion of initially reported patients who
could not be included in the validation study because of missing baseline information.
The remaining patients were included if they met inclusion criteria similar to those of
the initial study (German Stroke Study Collaboration, 2004).

In the test data, a subset of variables assessed in the training phase was included.
In total, 38 predictive variables shown inAppendixA that had been assessed previously
were also available in the test data set.

We included only those patients with complete baseline and follow-up information
obtained between 85 and 120 days after admission. Details on loss to follow up can be
found elsewhere (GermanStroke StudyCollaboration, 2004).Of the 1470patientswith
complete follow-up, 57.3% were men. Mean age of patients at baseline was 67.9 years
(SD 12.4). After 100 days, 831 patients (56.5%) were completely restituted (BI ≥ 95),
526 patients (35.8%) were incompletely restituted (BI < 95), and 113 patients (7.7%)
had died. Complete case records were available in 1447 (98.4%) patients.

Patients were informed about study participation and informed written consent
was obtained to forward personal data to the coordinating center. Patientswere treated
according to best current knowledge in clinical routine. The study was approved by the
Ethics Committee of the University of Essen and aspects of data safety were approved
by the responsible data protection state representative.

3.5 Logistic regression

As primary analysis, a prognostic model was developed in the training data using
the logistic regression model to predict complete functional restitution vs. incomplete
restitution or mortality.

In the first step, descriptive statistics were obtained for all 49 variables and the
recruiting centre. Because of a frequency of less than 4% in one of the alternative
categories, four binary variables were excluded (localisation of the infarct in the
anterior cerebral artery, borderline middle/posterior cerebral arteries, borderline
anterior/middle cerebral arteries, and long perforating arteries). Another three single
variables were eliminated because of substantive correlations with other variables and
less predictive value or reliability than the respective correlated variable (National
Institute of Health-Stroke Scale (NIH-SS), items left leg paresis, right leg paresis, and
commands).

Tomodel the relationship between continuous variables (age and bodymass index)
and outcome, univariate fractional polynomials were used on randomly selected 25%
of the total sample (Royston et al., 2000). For age, the best fit was obtained including
only the linear term. No significant gain was achieved by including body mass index;
this variable was therefore excluded. The ordinal variables NIH-SS total score and
Rankin Scale were treated as linear variables in the regression models. We used
this method because a linear fit is regarded as the natural approach when expecting
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a monotone effect of the ordinal covariate (Agresti, 1990). In addition, we applied
fractional polynomials on randomly selected 25% of the total sample to model the
relationship between these two scores and the outcome. For both variables, the best
fit was obtained including only the linear term. In addition, no significant center effect
was observed prior to multivariate model building upon use of logistic regression with
dummy-coded center variables (likelihood ratio test p > 0.1).

The remaining 38 variables were fitted using logistic regressionmodels via forward,
backward and stepwise selection. The EPV was >20. Nevertheless, variables were
retained only if their resulting p-value was ≥0.005 (Altman and Lyman, 1998).
Frommodels with all variables that resulted from any of the selection procedures, any
variable with p > 0.005 was eliminated backward. To the remaining set of variables,
every previously eliminated variablewas again added andkept in themodel if it fulfilled
the same criteria. Finally, all two-way interactions of the resulting variables were
investigated and kept if p < 0.005 and if, for categorical variables, each cell contained
at least 4% of observations.

We are fully aware that our strategy for exclusion of variables and variable selection
is risky and need not be reliable. It is simple to construct examples where variables
x1 andx2 are highly correlatedwith eachother, both by themselves showno correlation
with the outcome variable, but when considered jointly in the model lead to excellent
prediction.

Table 1 Logistic regression model in the training data

Variable β̂ S.E.β̂ OR 95% CI

Intercept −8.378 0.510
Neurological complications 1.289 0.332 3.628 1.892–6.958
Fever >38◦ 1.078 0.238 2.937 1.842–4.683
Lenticulostriate arteries infarction 0.743 0.216 2.103 1.378–3.209
Diabetes mellitus 0.655 0.152 1.925 1.430–2.591
Rankin scale 0.537 0.070 1.710 1.490–1.963
(Difference of 1 scale score)
Prior stroke 0.517 0.161 1.676 1.223–2.297
Left arm paresis 0.488 0.103 1.629 1.330–1.994
(Difference of 1 scale score)
Female gender 0.394 0.138 1.484 1.131–1.946
Right arm paresis 0.393 0.089 1.481 1.244–1.763
(Difference of 1 scale score)
NIH-SS total score at admission 0.074 0.024 1.077 1.028–1.129
(Difference of 1 scale score)
Age 0.066 0.006 1.068 1.055–1.082
(Difference of 1 year)

β̂, parameter estimate; S.E.: StandardError; OR:OddsRatio; CI: Confidence Interval; NIH-SS:
National Institute of Health-Stroke Scale.

For the finalmodels, parameter estimates with standard errors (S.E.), odds ratios (OR)
and asymptotic 95% confidence intervals (CI) for all variables were calculated and
are presented in Table 1. The model explained R2 = 61.7% of the complete variation
according toMcKelvey and Zavoina (1975). Leave-one-out cross-validation was used
to estimate the shrinkage factor γ (Verweij and Van Houwelingen, 1993): A factor of
γ = 0.973 was obtained. The threshold for classification using the logistic distribution
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function was set to 0.437 so that the predicted proportion of events was equal to the
observed. The percentage of thus correctly classified patients was estimated (Verweij
and Van Houwelingen, 1993). In addition, we defined specificity as the fraction of
correctly classified patients who were completely restituted after three months, and
sensitivity as the respective fraction of correctly classified patients who were only
incompletely restituted or deceased (see Table 3).

We employed a ten-fold cross-validation for internally validating the model.
To be specific, we performed the entire model development as described above in every
single one of the ten splits. The cross-validated error fractions were then calculated as
the average of the ten single error fractions as shown in Table 3.

For temporal validation, data of all 581 patients in the test data set were utilised
who had been recruited in the same study centres as the patients in the training data.
External validation of themodel was based on the data of all 866 patients coming from
different study centres. Using the shrunken estimates and the predefined threshold of
the previously developed model, patients in both subsets were classified. The quality
of classification in terms of correctly classified patients was determined. Table 3
depicts the hit rate (overall accuracy fraction) as well as sensitivity and specificity.
To compare accuracy fractions between internal, temporal, and external data sets,
we computed 95% confidence intervals on the difference of proportions according to
(Newcombe, 1998) (see Section 6.1) as well as two-sided exact p-values from Fisher’s
exact test. Correct classification fractions do not differ substantially for internal and
either temporal or external validation (difference = −0.0198 [−0.0554; 0.0189] and
0.0276 [−0.0058; 0.0625], p = 0.34 and 0.11, respectively). However, classification
results are significantly worse for the external data compared with the temporal
validation data (0.0474 [0.0040; 0.0893], p = 0.03).

4 Learning machines: single classifiers

Having outlined the general framework, our example data and then our primary
analysis, we now turn to the description of the typical scenario for the use of
learning machines. In the setting of a medical prognostic study, we have a set
of n patients who have experienced a clinically relevant dichotomous outcome yi.
Furthermore, for every patient we have collected data on a set of p predictive
variables xi = (xi1, . . . , xip)′, called the features. The aim of the prognosis is to
predict the dichotomous outcome based on the predictive variables, and we thus have
a classification problem. This problem is also termed a supervised learning problem.
This means that, for every patient, values of both predictive variables and the outcome
are known. Using an algorithm, a prediction ŷi is generated and can be compared with
the ‘supervisor’ yi.

In unsupervised learning, only values of predictive variables are available.
Here, the aim is to infer associations or structures among the variables and to
identify useful low-dimensional spaces within the original space. Examples for these
approaches are principal components, multidimensional scaling, cluster analysis and
self-organising maps (Hastie et al., 2003). As a comparison with the real answer is
impossible, it is generally difficult to ascertain the validity of inferences drawn from
the result of unsupervised learning machines. This is a somewhat controversial area
still under active research.
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In medical prognostic studies, a central goal is not necessarily to detect underlying
patterns in the available data to derive or uncover an inherent structure. Instead, the
collection of patients with values in both predictive and outcome variables is essential.
In someapplications, itmay alsobeof subsequent interest to identify subsets of patients
who are at increased risk. In this paper, we therefore focus on supervised learning
machines only, and we begin with stand-alone learning machines.

We start with CART (Section 4.1) which were developed by Breiman et al. (1984).
Over the past 20 years, they have been widely used in different areas including
computer science, biology, psychology, and prognostic and diagnostic clinical studies
(e.g., Costanza and Paccaud, 2004; Schwarzer et al., 2003; Smolle and Gerger,
2003). They are implemented in many freely and commercially available software
packages. In the 1990s, SVMs that belong to the family of so-called kernel methods
were developed (Cristianini and Shawe-Taylor, 2000; Noble, 2006; Schölkopf and
Smola, 2002). They have been employed in a variety of application fields, including
biomedical research, andhere theyareprimarily used for the analysis of gene expression
data (see, e.g., Simon et al., 2003). Different easy-to-use implementations are freely
available. They have, however, been rarely applied in classical biomedical studies like
patient-centered prognosis.

4.1 Classification and regression trees

The overall goal ofCART is to generate adecision tree that classifies patients correctly.
Beginning at the stem or root node with the entire sample of patients, one follows the
stem into its branches. At each node of the tree, a split in the sample is made, until, in
the last branches, only a relatively homogeneous subset of patients remain.

Technically speaking, the general idea of CART is to determine a sequence of
logical ‘if-then’ conditions that permit an accurate classification of cases (see Figure 1).
Beginning with the entire data as the first node, the feature space is partitioned into
two branches. These in turn become the nodes for the next partitioning. Hence, the
procedure is described as a binary recursive partitioning algorithm; binary, because
a parent node is always split into exactly two child nodes, and recursive, because the
process can be repeated by treating each child node as a parent. The objective in
the partitioning is to identify subgroups of patients who are increasingly homogeneous
with respect to their outcome.

Figure 1 Dropping a case down a classification tree. Four data splits c1, c2, c3, and c4 are
shown and cases are classified according to their feature values x1, x2, x3, and x4.
Bullets represent the predicted outcomes ŷi = +1, while predicted outcomes
ŷi = −1 are depicted by diamonds
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The Classification and Regression Tree (CART) procedure

The CART procedure may be separated into the following four steps which are
described below in more detail:

1 A tree is grown.

2 The tree growing process is stopped.

3 Branches of the tree are pruned.

4 The optimal tree is selected.

1 Growing the tree
To grow a classification tree, these steps are performed:

a One feature xj with j = 1, . . . , p out of the entire feature space is selected.

b For each possible data split, also termed partition, using this xj , the
observations in both partitions are classified. Usually, each new case is
assigned to the majority class in this partition.

c Considering all possible data splits within every possible feature, the best
split c1 is selected that minimises the impurity in the resulting partitions.
Since all splits using every feature are searched, there is a large number of
candidate splits, and usually a brute force search through all splits is
conducted.

d Within one of the resulting partitions, again one feature xj is selected.

e Considering all possible data splits in this partition, the best split c2 is
selected that minimises the error within the respective partition.

f Steps (d) and (e) are repeated.

Figure 2 illustrates the results of this algorithm with two features x1 and x2. Upon use
of these data splits, a classification tree with the splits depicted as nodes can be built as
displayed in Figure 1. Dropping a case down the tree results in the classification of the
patient. The simplest version of a tree contains only two nodes, resulting from a single
data split, and is called a stump.

In choosing the best partitioning, CART seeks to maximise the average purity
of the two child nodes. Different measures of purity, i.e., splitting criteria can be
applied.With p being the proportion of observations in one of the two outcome classes,
we define:

Misclassification error: 1 − max(p, 1 − p),
Gini index: 2p (1 − p),
Deviance: −p · ln(p) − (1 − p) · ln(1 − p).

The misclassification error is the typical one to use, although the Gini index and the
deviance are more sensitive to changes in the node probabilities. In our applications
we prefer the use of the Gini index because it is related to the variance. More splitting
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rules and arguments for choosing a specific splitting rule are given in Zhang and
Singer (1999). Instead of minimising the impurity as pointed out in (c), the aim can be
defined more generally to minimise costs. This distinction becomes important when
some predictions that fail have more severe consequences than others, or when some
predictions that fail occurmore frequently than others. To this end, different losses can
be assigned by weighting the observations in each class differently. Hence, the prior
probabilities in the classes are changed which then influence the growing of the tree.

Figure 2 Separation of patients by a classification tree. Three data splits c1, c2 and c3 are
shown for features x1 and x2. Bullets represent yi = +1, while yi = −1 is depicted
by diamonds

2 Stopping the tree building

One important parameter for growing trees is the size of the trees, or equivalently,
the stopping rule that is applied. Larger trees have the advantage of exploiting more
of the available information for accurate predictions. However, larger trees typically
lead to overfitting the data, with subsequent loss in generalisation to new data.
With larger trees the results are more difficult to interpret. Smaller trees, on the other
hand, are easier tounderstandbutmightnot adequately reflect complexdata structures.
Common stopping rules are: stop the growing process when

1 only cases with the same outcome remain in every child node

2 all cases within every child node have identical predictor variables

3 an external limit on the depth or complexity of the tree, i.e., the number of levels
in the tree has been reached.

It has, however, been pointed out that it is usually impossible to specify a reliable
stopping rule in advance. Instead, maximal trees are grown and then pruned in order
to achieve optimal sized trees.
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3 Pruning the tree

Following Breiman et al. (1984), pruning a tree starts from a tree grown to its maximal
size. Beginning at the terminal nodes, child nodes are subsequently cut (collapsed
upwards), i.e., pruned away from the branch. This process depends on the definition
of a complexity parameter ζ that governs the tradeoff between complexity, i.e., the
number of nodes of the tree and its accuracy for future data. Pruning is continued as
long as the resulting change in misclassification cost is less than ζ times the change in
tree complexity; thus, ζ is a measure of how much additional accuracy a split must
add to the entire tree to warrant the additional complexity (Breiman et al., 1984).
With different ζ, different ‘optimal’ trees are obtained.

4 Selecting the optimal tree

The final task consists of selecting the most accurate tree from the set of pruned
trees. If no independent data set is available to better estimate the accuracy, internal
validation is used which is based on the original training data set.

Although the procedure of growing classification trees is intuitive, there are some
disadvantages to CART. These include the problem that theremay be competing splits
at some nodes which result in the same purity (see Figure 3(a)). The usefulness of the
resulting trees will suffer from the fact that the trees have a high variance in many
situations. That is to say, small changes in the data may result in extremely different
trees, thus different interpretations, distinct predictions for individual cases andwidely
varying error fractions. Also, when the theoretical and distributional assumptions
of more traditional methods are met, then these may be preferable; a comparative
discussion ofCARTwith logistic regression has been given inZhang and Singer (1999).

Finally, there may be sample data structures for which the basic tree algorithm
is ineffective. Three such examples are presented in Figure 3. In Figure 3(a) we see
that any initial split, on variable x1 or on variable x2, does not produce a useful
classification.However, it is also true that subsequent splits on x1 and x2 yield accurate
classification. In Figure 3(b) and (c) we again see that no useful split arises when using
just x1 or x2. However, efficient splits are possible with appropriate modifications of
the explanatory variables. In the first case, displayed in Figure 3(a), two branches
of a hyperbola have to be added, while linear and quadratic functions need to be
modelled in the second and third example, respectively. The implication is here that
inclusion of elementary functions of the data may effectively handle quite diverse data
structures.Anice example of this is developed in the section on feature space and kernel
functions using the kernel function technology deployed in support vector machines;
more on this is presented below (see Section 4.2).

Example for CART

To grow a classification tree method = "class" on the training data from the stroke
patients, we utilised the R-package rpart by Therneau and Atkinson, maintained
by Ripley. R (R Development Core Team, 2005) has a home page at http://www.
R-project.org and is freely distributed under a GNU-style copyleft. We specifically
employed the Gini index parms = list(split = "gini") as split criterion in tree
growth (step 1). The stopping of the tree growth (step 2) was accelerated by restricting
the minimum number of observations in a node to 20 (minsplit = 20). In step 3, the
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tree was pruned by setting the complexity parameter to 0.01 (cp = 0.01). As a result,
splits that decrease the lack of fit by a factor of less than 0.01 were not conducted.
Hence, whereas the original tree utilised 22 of the 38 available variables, only three
were kept in the pruned tree. The resulting tree is displayed in a flow chart in Figure 4,
and the R-code for tree building is

tree.train <− rpart(y ∼., data = train, method = "class",

parms = list(split = "gini"),
control = rpart.control

(minsplit = 20, cp = 0.01))

Here, ∼ separates the outcome train$y from the features in the training data.
The 2 × 2 table of prediction in the training data is obtained by:

table(predict(tree.train, type = "class"), train$y)

The classification tree thus obtained was then applied to the training data to compute
error fractions, sensitivity, and specificity. Predictions for the validation data are
created using the object tree.train from the training data with the features from the
test data by

tree.test <− predict(tree.train, newdata = test, type = "class")

We also employed ten-fold cross-validation on the training data to estimate the
respective internally validated values. The results are displayed in Table 3. Temporal
and external validation were performed by applying the fixed classification tree to the
temporal and external subsets of the test data sample (see Table 3).

Figure 3 Problematic data sets for classification trees: No reasonable first split can be made in
the figure on the left. Classification trees may not allow linear splits, which would be
reasonable in the figure displayed in the middle. Similarly, a circle can separate the
two groups in the figure on the right. However, this may not be possible with a given
classification tree algorithm, unless appropriate functions are included in the list of
explanatory variables

4.2 Support vector machines

SVMs require more mathematics than the other approaches described here. We aim
at minimising the in-text mathematics in order to present the intuitive ideas of this
method. Therefore, we confined mathematical details to Appendix B.
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Figure 4 Classification tree for stroke data. Diamonds represent a predicted complete
restitution, while predicted incomplete restitution or mortality is depicted by bullets.
Number of patients (loss values) are given

A starting point is the classification problem as depicted in Figure 5. For each outcome
yi = +1 (solid bullets) or yi = −1 (open diamonds) we have an associated vector of
explanatory variables xi ∈ R

p. The aim is to find a hyperplane f(x), a straight line in
Figure 5, which best separates the groups. The equation for a hyperplane is given by
(see Appendix B)

{x ∈ R
p : f(x) = x′β + β0 = 0}.

Multiplication of both x′β and β0 with the same non-zero constant results in the same
hyperplane. Therefore, we restrict β to the unit vector, i.e. ‖β‖ = 1.

The separable case

We first consider the case of separable classes, where by definition we can find a
function f(x) = x′β + β0 such that yif(xi) > 0 for all i = 1, . . . , n. Obviously, there
is an infinite number of separating hyperplanes for the problem displayed in Figure 5.
To uniquely determine a separating hyperplane under the SVM criteria, we therefore
use the hyperplane which has the biggest margin between the classes (Figure 6).
The band is C units away from the hyperplane on either side, and the margin thus is
2 · C units wide.

The maximisation problem can therefore be expressed as

max
β,β0,‖β‖=1

C subject to yi

(
x′

iβ + β0
) ≥ C, i = 1, . . . , n. (1)

This optimisation problem is restated in Appendix B.3, and its solution is outlined
in Appendix B.4. Once the separating hyperplane f(x) has been determined,
the classification rule for an observation x∗ of explanatory variables can be
written as

sign
(
f(x∗)

)
= sign

(
x′

∗β + β0
)
. (2)

This means that observations x∗ are classified either as +1 or −1 depending on the
side on which they fall on the hyperplane.
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Figure 5 A separable classification problem together with the separating hyperplane
{x : x′β + β0 = 0}. The hyperplane represents the decision boundary. Solid bullets
represent yi = +1, while yi = −1 is depicted by open diamonds. The
two-dimensional space represents the vector space of the features x

Figure 6 The separable classification problem together with the separating hyperplane and
the margin. The band is C units away from the hyperplane on either side. Thus the
margin is 2 · C wide

The non-separable case

We next assume overlapping classes so that they cannot be separated perfectly by
a hyperplane (Figure 7). The aim, however, still is the maximisation of themargin 2 · C
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though we now have to allow for some points falling within the margin, and also some
points falling on the wrong side of its margin. In these cases, the condition

yif(xi) = yi

(
x′

iβ + β0
) ≥ C

cannot be fulfilled for all observations i. Instead, the distance will be smaller for some
observations i by a margin factor (1 − ξi), where ξi ≥ 0 for all i, i.e.,

yif(xi) = yi

(
x′

iβ + β0
) ≥ C(1 − ξi).

For a point that falls on the correct side of its margin, ξi still is 0. Note that though
ξi > 0 if a point falls on the wrong side of its margin, a misclassification only occurs
if ξi > 1. If the sum

∑n
i=1 ξi is bounded from above by a constant γ, a user-defined

tuning parameter, then the total proportional amount by which predictions f(xi) are
on the wrong of their margin is also bounded. The margin grows inversely with γ,
i.e., it is larger for small γ, and smaller for large γ. The slack variables ξi can thus be
interpreted as the proportional amount by which the prediction f(xi) is on the wrong
side of its margin.

Figure 7 The non-separable classification problem together with the separating hyperplane
and the margin. The points labelled ξi are said to be on the wrong side of their
margin. Points on the correct side have ξi = 0

We aim at maximising the margin C subject to ‖β‖ = 1 as in the separable case.
However, we now have an additional boundary condition

∑n
i=1 ξi ≤ γ. This leads

to a quadratic optimisation problem with linear constraints, and its solution can
thus be obtained by a quadratic programming algorithm using Lagrange multipliers.
Details are described in Appendix C. In the following and in Appendix B.4, αi denote
the Lagrangian multipliers for the constraints

yi

(
x′

iβ + β0
) ≥ 1 − ξi. (3)
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It is sketched in Appendix B.4 that the minimisation problem has a solution with the
simple form

β̂ =
n∑

i=1

α̂iyixi. (4)

Importantly, the coefficients α̂i are only greater 0 for those observations i for which
the equality sign holds in constraint (3). These observations are the support vectors
because β̂ is represented in terms of these alone. Note that only these observations are
critical for the classification problem. Hence, an observation on the correct side and
far away from its margin, will not contribute to the classification problem. Only those
observations will become support vectors that are either on the wrong side or close to
the boundary of their margin. The existence and nature of support vectors in the SVM
approach thus strongly distinguishes this method from a classical linear discriminant
approach, to which SVMmight seem outwardly similar. In effect, the SVM only ‘sees’
the data near the decision boundary.Nonetheless, despite this importantmathematical
difference a linear SVMusing the original input data to specify the hyperplane decision
boundary, may generate a classifier that is almost identical to a linear discriminant.
That the SVM approach has considerably more theoretical richness, and thus more
practical flexibility, is revealed in the next section wherein a systematic method is
discussed that provides for new features, while still maintaining a linear outlook using
hyperplanes.

Feature space and kernel functions

Figure 8(a) illustrates that a good separation by a single cut may be impossible.
Here, the linear space is considered with yi = +1 at the tails of the distribution of the
x-variable. If, however, the dimension of the feature space is increased by a so-called
kernel function, the SVM might be able to find a good hyperplane decision boundary
in some enlarged and transformed space of features (see Figure 8(b)).

To this end, we consider transformations of the data, h(x), into
a higher-dimensional feature space so that the separating hyperplane can be
written as

h(x)′β + β0.

The disadvantage of this increase in dimensionality are the CPU–time expensive
calculations, but this computational effort may be reduced significantly by using a
so-called kernel function which we now describe.

To start, we combine the decision rule (2) and the solution of the optimisation
problem (4). This leads to

sign
(
f(x∗)

)
= sign

(
n∑

i=1

αiyix
′
∗xi + β0

)
= sign

(
n∑

i=1

αiyi〈x∗, xi〉 + β0

)
(5)

for true Lagrangian multipliers αi and the usual inner product 〈·, ·〉.
If the feature space is used instead of the input space, equation (5) is replaced by

sign
(
f(x∗)

)
= sign

(
n∑

i=1

αiyi〈h(x∗), h(xi)〉 + β0

)
. (6)
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Figure 8 Example of (a) a one-dimensional input space and (b) a higher dimensional feature
space. No single cut separates bullets and diamonds in the linear space (a). The
feature space (b) allows separation by a hyperplane. The functions h2 and h3 are two
components of the inhomogeneous quadratic kernel with c = 1 from equation (7);
the univariate input x from (a) is transformed via this kernel to the two-dimensional
feature space (b). Perfect separation is possible with the displayed data in this feature
space

Calculations may be reduced drastically by using a function K, such that

K(x, xi) = 〈h(x), h(xi)〉

allows the computation of the value of the inner product without recurrent
explicit computation of the function h. The function K is called the kernel
function and should be symmetric and positive definite. On a more abstract level,
Reproducing Kernel Hilbert Spaces (RKHS) are used for kernel definitions so
that the Riesz representation theorem may be applied (Reed and Simon, 1980).
Properties of kernel functions and of RKHS are discussed in detail, e.g., in
Schölkopf and Smola (2002).

Popular choices for kernel functions are sigmoid kernels, also termed neural
network kernels, K(x, xi) = tanh(κ〈x, xi〉 + ϑ), where κ > 0 and ϑ < 0, Gaussian
radial basis function kernels K(x, xi) = exp(− 1

2σ2 ‖x − xi‖2), with σ2 > 0, and,
finally, inhomogeneous dth degree polynomial kernels, where d ∈ N and c ≥ 0:
K(x, xi) = (c + 〈x, xi〉)d.

In the example of Figure 8, we used an inhomogeneous quadratic kernel
K(x, xi) = (1 + 〈x, xi〉)2 with c = 1 and univariate input so that x = x and xi = xi.



310 I.R. König et al.

This kernel yields h(x) =
(
h1(x), h2(x), h3(x)

)
=

(
1,

√
2x, x2

)
since

K(x, xi) = 〈h(x), h(xi)〉 =
(
1 + 〈x, xi〉

)2 = 1 + (
√

2x)(
√

2xi) + x2x2
i . (7)

For illustration, we displayed only h2 and h3 in Figure 8 because h1(x) = 1.

Example for SVM

We utilised the R-package e1071 to train and test SVMs in the stroke data sets.
To be specific, SVMs with a sigmoid, radial, and polynomial kernel function were
developed on the training data set. To select suitable function parameters, a grid search
over possible parameter values (gamma = 0.005 + 0.005 ∗ (0 : 2))was employed using
the tuning function. As an additional parameter, the cost of a constraints violation was
tuned (cost1 + 0.05 ∗ (0 : 10)). It should be noted that this tuningmight require large
CPU–time; for instance, conducting a grid search over 3 times 11 parameter values
already took 10 minutes on a Pentium IV with 2.8GHz. The code piece for tuning the
SVM in the training data with a radial kernel is

svm.rad.tune <− tune.svm(train.x, train.y, kernel = "radial",

gamma = 0.005 + 0.005∗(0 : 2),
cost = 1 + 0.05∗(0 : 10))

Here, train.x is a data matrix with features in the training data, and train.y is
the factor of outcomes in the training data. The performance of the SVMs for each
constellation can be displayed by svm.rad.tune$performance. After tuning, an SVM
with a specific parameter constellation may be computed:

svm.train.rad <−svm(train.x, train.y, kernel = "radial", gamma = 0.01,

cost = 1.4)

The next two commands show the predicted values for the training data and the 2 × 2
of prediction in the training data

svm.train.rad$fitted
table(svm.train.rad$fitted, train.y)

We employed cross-validation and determined SVMs with lowest 10-fold
cross-validated overall error fraction in the training data. As the tuning function
currently does not allow the output of other than the overall error rates, sensitivity and
specificity were not estimated from cross-validation. Sensitivity and specificity were
estimated in the training data. For the use of a sigmoid, radial, and polynomial kernel
function, the following parameters were selected:

sigmoid: K(x, xi) = tanh(0.0055〈x, xi〉 + 0.1), cost = 0.95

radial: K(x, xi) = exp
(

− 1
2 · 125

‖x − xi‖
)

, cost = 1.05

polynomial: K(x, xi) = (0 + 0.02〈x, xi〉)1, cost = 1.1.
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The SVMs with these kernel functions were then tested in the temporal and external
validation data, estimating overall accuracy fractions as well as sensitivity and
specificity. The respective results are depicted in Table 3.

To predict outcome in the test data using the data matrix test.x with features in
the test data, to showpredicted values for the test data and the 2 × 2 table of predictions
in the test data, the following commands are used:

svm.test.rad <− predict(svm.train.rad, test.x)
svm.test.rad

table(svm.test.rad$fitted, test.y)

5 Learning machines: ensemble methods

Ensemble methods, or so-called committee methods represent a family of procedures
that differs from all of the above. The basic idea is motivated by common real life
experience: it is often better to consult several experts instead of just one. If the experts
have different opinions, information is often obtained with greater reliability, the
argument being that the different experts each see different parts of the sample
space with greater individual efficiency. Usually, people seeking advice from these
committees of experts follow a majority vote over the separate decisions. This is the
principle utilised in ensemble methods although refined versions of the majority vote
can be even better than simple majority vote (e.g., Schapire, 1990). Moreover, the
predictions of a committee of quite distinct algorithms is provably at least as good as
the best single algorithm as shown by Mojirsheibani (1999).

As in real-life committees, two conditions need to be fulfilled for the resulting
classification to be more accurate than the single classifiers. Firstly, there has to be
a certain amountofdisagreementor lackof correlationamong the committeemembers.
Thus, if one classifier makes a wrong decision, it is possible that he or she will be
outvoted by the majority. The underlying idea is that we would like the separate
classifiers to efficiently see or interpret different aspects of the data. Secondly, the
individual members have to be minimally accurate in their classifications, i.e., their
error fraction must be better than random coin tossing. Otherwise, the error fraction
of the majority vote will increase compared to the single error fractions.

An example makes this clear. Consider an ensemble consisting of 20 independent
learning machines with an error fraction of 0.3 each. If a majority of more than 10
members is required for classification, then the error fraction can be calculated under
a binomial distribution to be 0.017 instead of the individual 0.3.

In principle, all manner of single algorithms can be combined, including CART,
SVMs, or classical logistic regression. However, simple algorithms are employed in
practice, and in most instances, classification trees are employed. Indeed, considering
ensembles of SVMormultivariable logistic regression as base classifier would be rather
unusual.

However, the main question is how a committee of different experts can be created
from the same single data set. Because the data are comprised of

• a number of cases

• a number of variables
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different data sets can be created from it by manipulating either the cases, or by
manipulating features, e.g., by randomly drawing predictors. For the first, some
approaches, such as those that invoke boosting, modify the samples for later
classifications by the errors of the earlier ones. The actual classification is then
based on some combination of the different single classifications. In other procedures
like bagging, which includes random forests as special case, bootstrap samples are
drawn for every single classification. As an alternative, one can increase variability
between experts by manipulating the input features or the outcome, or by introducing
randomness in the learning algorithm (Dietterich, 2000).

Here, we focus on the ensemble methods of boosting (Section 5.1), bagging (5.2),
and random forests (5.3). In addition to other ensemble methods including Bayesian
averaging (Domingos andPazzani, 1997;Hoeting et al., 1999;Hoeting, 2002), different
further developments of the described algorithms like bundling (Hothorn and Lausen,
2005), double-bagging (Hothorn and Lausen, 2003), or bagboosting (Dettling, 2004)
have been proposed. As the general principles of these resemble those described below,
we refrained from describing them in detail.

5.1 Boosting

Boosting is a broadly useful ensemble method that sequentially applies a number of
learning machines to repeatedly modified versions of the training data. An idea closely
related to boosting traces back to Tukey (1977). He proposed ‘twicing’, where in a first
step a linear regression model is fit to the original data. In a second step, the same
linear model with the same predictors is fit to the residuals obtained after the first step.
The parallel here with boosting is that in a linear model the residuals form a weighted
version of the original data. With this two-step regression procedure, model fit and
prediction can be improved if there is some recoverable structure left in the data after
the first regression step. Furthermore, nothing is lost if residuals have zero mean after
the first step. In the last 15 years, this line has been followed in a number of approaches.

The boosting procedure

For a sample of n observations, the original boosting idea as proposed by Schapire
(1990) is as follows:

• Using the original n observations, develop a classification rule G1 from a single
learning machine, e.g., CART, SVM or logistic regression to predict the binary
outcome {−1; +1}. Although most individuals will be correctly classified by this
learning machine, several subjects will be misclassified, and it is possible that
these patients systematically differ from those being correctly classified.

• Draw a random sample of total size n with replacement consisting of n
2

misclassified individuals and an identical number of subjects from the set of
correctly classified patients. Train on the same features as before to predict the
same endpoint; the result is the classifier G2.

• Interesting cases are those with discrepant results of the first and the second
learning machine. Therefore, train classifier G3 with n cases drawn with
replacement only from those for which G1 and G2 disagree.

• The boosted classifier is the majority vote across the three prediction rules G1,
G2, and G3.
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This original boosting algorithmobviously does not use all available data in the second
classification step and has therefore been improved over the last decade. In further
developments, a sequence of M classifiers G1(x), . . . , GM (x) is produced instead of
three, and again, the predictions are then combined via a weighted majority vote to
produce the final prediction. More generally, cases who were incorrectly predicted by
previous classifiers are assigned a higher weight for the next iteration.

In very general terms, with M machines G1, G2, . . . , GM , the ensemble is defined
by a linear combination of the single machines Gm(x):

G(x) =
M∑

m=1

αmGm(x)

with αm being the coefficient associated by ensemble member Gm, and where αm and
Gm are evaluated within the procedure (Meir and Rätsch, 2003). The global aim of the
learning procedure is to choose the machines Gm and weights αm in such a way that a
specific loss function is minimised. Two algorithms in whichGm and αm are estimated
are described below.

The most prominent boosting approach is the Adaptive Boosting procedure
(Freund and Schapire, 1997), AdaBoost for short. It has already been utilised in
different areas of medical research (e.g., Huang and Murphy, 2004; McLaughlin and
Berman, 2003; Qu et al., 2002). The discrete AdaBoost algorithm works as follows
(Hastie et al., 2003):

1 Initialise observation weights ωi,1 = 1
n for i = 1, 2, . . . , n.

2 For m = 1 to M do

a Fit a classifier Gm(x) to the training data using the above weights.

b Compute

errm =
∑n

i=1 ωi,mI(yi 
= Gm(x))∑n
i=1 ωi,m

,

where I(·) denotes the indicator function.
c Compute

αm = log
1 − errm

errm
.

d For i = 1, 2, . . . , n adjust weights

ωi,m+1 = ωi,m exp
(
αmI

(
yi 
= Gm(x)

))
.

3 Output G(x) = sign
( ∑M

m=1 αmGm(x)
)
.

Here, αm is computed by the algorithm and fulfills a two-fold function. First,
it determines the relative contribution of the respective Gm in the final step
of combining all machines for an overall prediction. The idea is to assign greater



314 I.R. König et al.

weights tomore accurate classifiers. And second,αm contributes to datamodifications
by determining the weights ωi,m. As a consequence, cases that are misclassified receive
more weight, and cases that continue to be misclassified receive increasing influence
in the next iteration. The discrete AdaBoost either returns a −1 or a +1 as decision
outcome, as seen from step 3 of the algorithm.

The main difference to further alternative procedures lies in the choice of the loss
function. To be specific, AdaBoost uses an exponential loss function where

L(G) = E[exp(−yG(x; γ)) |x]

is minimised. Here, γ denotes the so-called regularisation parameter for themachineG
(Hastie et al., 2003). In the variant called LogitBoost (Dettling and Bühlmann, 2003),
one instead minimises

L(G) = E
[
y∗G(x; γ) − log

(
1 + eG(x;γ)) |x]

with y∗ = 1
2 (1 + y) ∈ {0; 1}. Consequently, LogitBoost aims at fitting additive

logistic regression models by a stepwise optimisation of the Bernoulli log-likelihood.
If the outcome is now coded by y∗ ∈ {0; 1} and the probability of the outcome y∗ = 1
is given by p(x) with p(x) =

(
1 + exp[−2G(x)]

)−1
, the algorithm of LogitBoost is

given as follows:

1 Initialise observation weights ωi,m = 1
n for i = 1, 2, . . . , n, G1(x) = 0 and

p(xi) = 1
2 .

2 For m = 1 to M do

a Compute working response and weights

zi =
y∗

i − p(xi)
p(xi)(1 − p(xi))

, ωi,m = p(xi)(1 − p(xi)).

b Fit gm(x) by weighted least-squares regression of zi to xi using weights ωi,m.

c Update Gm+1(x) ← Gm(x) + 1
2gm(x) and p(x) via above formula.

3 Output sign (G(x)) = sign
( ∑M

m=1 gm(x)
)
.

The choice of a different loss function, e.g., AdaBoost or LogitBoost, has been seen
to depend on the noise in the data. Thus, with noisier data LogitBoost fares better,
as AdaBoost tends to focus too much on outliers that are difficult to classify or on
possibly unrepresentative data points.Other variants of the boosting scheme, including
Gentle AdaBoost (Friedman et al., 2000) and BrownBoost (Freund, 2001), directly
de-emphasise outliers when these turn out to be too difficult to classify.

Once the loss function and hence the specific form of the boosting algorithm has
been chosen, one has to decide upon which base classifier to use and how many
machines to combine. In practice, CART with small trees is usually employed as base
learning machines Gm. This can be justified by the experience that boosting profits
most from machines that already perform quite well but are slightly too simple for
the data at hand. Hence, even stumps seem to work well in a boosting ensemble.
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With regard to the number ofmachines to be combined, recent research has shown that
there exists an optimal Bayes-consistent minimum number of machines to be trained
(see Koltchinskii and Yu, 2004 and the associated papers). Of particular importance
in this research is the fact that training more machines than this optimal number may
steadily increase the error fraction. Boosting therefore may result in overfitting if an
excessive number of machines is used, thus boosting can create ensembles that are less
accurate than a single classifier (Opitz and Maclin, 1999). There has been discussion
in the literature on whether boosting algorithms routinely overfit the data. Experience
has shown that with smaller sample sizes and higher noise in the data, the procedure
does indeed overfit. Therefore, some regularisation is required to limit the complexity
of the model.

Similarities between boosting algorithms and SVMs have been shown
lately (for an overview, see http://www.boosting.org). Both approaches attempt to
somehow maximise the margin; however, the norms utilised for the instance vector
and the weight vector differ. In addition, different optimisation procedures are used,
and as a result, different margins are obtained.

Example for boosting

As an example of applying boosting algorithms, we utilised LogitBoost for R as
implemented by Dettling which can be retrieved via http://stat.ethz.ch/∼dettling.
Here, stumps are grown as base learning machines. For internal validation, we used
10-fold cross validation in the training sample.

Logistic boosting using the package can be carried out with

boost.train <− logitboost(train.x, train.y, train.x, mfinal = 100)

where train.x and train.y denote the features and the outcome vector in the training
data, and mfinal is the number of trees to be grown. Results from 100 stumps in
trainingand internal validationdataaredisplayed inTable 3.Whenvarying thenumber
of stumps from 20 to 100, only a negligible impact on the cross-validated error fraction
was observed. If 100 trees are grown, the object boost.train contains 100 elements.
Thus, the predicted probabilities after the last tree for the training data are stored in
train.probs via

train.probs <− boost.train$probs[, 100]

We use a loop to classify patients according to the 50% probability cut-off and to
create a 2 × 2 classification table in the training data

train.probs.bin <−0

for (i in 1 : length(train.probs))
{train.probs.bin[i] <− if(train.probs[i] > 0.5) 1 else 0}

table(train.probs.bin, train.y)

10-fold cross-validation may be performed by boosting

boost.train.cv <− crossval(train.x, train.y, v = 10, mfinal = 100)
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with v denoting the number of data splits. The predicted probability values for the
cross-validated training data are obtained by

train.probs.cv <− boost.train.cv$probs[, 100]

As described above for the object train.probs.bin, patients may be classified with
working object train.probs.cv instead of train.probs. Results from the training
data can be tested on the test data test.x via

boost.test <− logitboost(train.x, train.y, test.x, mfinal = 100)

Predicted probabilities, classifications and the 2 × 2 table of classifications in the test
data can be obtainedwith similar code as above. In fact, we applied the resultingmodel
to the temporal and external validation data, and the respective error fractions are
given in Table 3.

5.2 Bagging

Bagging was named after its property to aggregate the information from different
bootstrap samples, and is therefore bootstrap aggregation or bagging for short.
Similar to boosting, the general purpose is to sequentially apply a number of learning
machines to repeatedly modified versions of the training data. Both bagging and
boosting utilise a combination of the many individual classifiers to generate an overall
prediction. However, there are two important differences. First, whereas in boosting
different weights are assigned to different machines, each single machine typically
receives the sameweight in the ensemble classification inbagging.The seconddifference
lies in the composition of the training samples for every machine. In boosting, training
samples are formed in a sophisticated way. In contrast, in bagging, a random sample,
typically a bootstrap sample, is trained for every machine of the original data set.

As each bagging step generates a disjoint pair of data sets, training is done on one
of the pairs and testing on the other.

The bagging procedure

With CART being the base classifier, the ‘standard’ bagging procedure is:

• From the original training data T with n cases, a bootstrap sample T ∗ consisting
of n cases is drawn with replacement. Hence, a specific case might be included
once, several times, or not at all.

• T is separated into the bagged sample T ∗ and the out of the bag (OOB) sample
T\T ∗ which are independent.

• A classification tree is grown on the bagged sample T ∗.

• All patients who are part of the OOB sample T\T ∗ are dropped down the tree
developed on the bagged sample for classification.

• The steps described above are repeated to train a pre-specified number of
machines. For classification, simple majority voting is used.
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The number of bootstrap samples to be drawn need not be fixed in advance and several
may be tried. However, numerous examples in the literature have shown that most of
the improvement in accuracy occurs after just 10 to 15 machines (Opitz and Maclin,
1999).We comment that with a sample size ofn cases in the training set, the probability
for a case just not to be drawn is (1 − 1

n ) in a single draw, and (1 − 1
n )n after n draws

which is approximately e−1 = 0.328 = 1 − 0.632 as n tends to infinity. Hence, each
bootstrap sample contains, on average, about two thirds of the original training set.
Immediately we see that one drawback of bagging, as with most bootstrap methods,
is that each model, i.e., each individual classifier is generated using only about 2

3 of
the data: a reduction in effective sample size is always operating. As every ensemble
machine is tested on an independent sample of OOB cases, there is, in principle, no
need to further internally validate the finalmodel in order to yield an unbiased estimate
of the error fraction, estimated from the OOB samples.

An alternative to standard bagging, where bootstrap samples are drawn, is
SuBagging. Here random samples, e.g., of half of the size of the original training data
set are drawn without replacement (Bühlmann, 2003).

As bagging tends to mainly reduce the variance without greatly increasing the
bias, it has been demonstrated that bagging improves the accuracy, especially if the
combined classifiers are unstable (Breiman, 1996), i.e., if small changes in the data
result in large differences in the classification. Phrased differently, bagging is most
effective when the classifiers have a large variance. This applies, e.g., to CART, but
also to regression models with subset selection. Consequently, for these approaches
bagging is almost alwaysmore accurate than a single classifier.However, bagging often
does not improve upon simple linear discriminant classifiers since these are known to
be quite stable.

Example for bagging

For analysing our stroke data sets, we used the implementation by Peters andHothorn
as part of the package ipred in R (R Development Core Team, 2005). In this package,
the single machines are CART. Using this approach we first grew maximally sized
trees and varied the number of trees between 10 and 100. Specifically, the model is
developed on the training data with nbagg bootstrap samples and the computation of
the OOB error estimates coob = TRUE by

bag.model <−bagging(y ∼ ., data = train, nbagg = 50, coob = TRUE)

Here,train is a data frame containing the features andavectoryof outcome factorised
in {−1; +1} in the training data.

We next determined the accuracy in the training and the test data set (see Figure 9).
Here, the accuracy did not increase visibly after drawing about 25 bootstrap samples.
The minimal observed overall error fraction in the training sample of 0.2159 was
obtained with 50 trees, and the respective overall error fraction, sensitivity, and
specificity are shown in Table 3. As the resulting model is already internally validated
via the incorporated bootstrapping procedure, no separate cross-validation was
performed. For temporal and external validation, the tree ensemble was applied to
classify patients in the test sample. Again, results are displayed in Table 3 and Figure 9.

pred.train <−predict(bag.model, type = "class",

aggregation = "majority")
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gives the predicted values for the training data, where type = "class" indicates that
classification is returned and aggregation = "majority" specifies the aggregation
algorithm. Finally,

pred.test <−predict(bag.model, newdata = test.x, type = "class",

aggregation = "majority")

table(pred.test, test.y[, 1])

yield the predicted values for the test data and the corresponding 2 × 2 table.

5.3 Random forests

A modification of bagging is random forests which has been introduced by Breiman
(2001). Applications of random forests in medical research have mostly focused on the
classification of genetic data (e.g., Schwarz et al., 2007; Schwender et al., 2004; for an
overview, see Ziegler et al. (2007)). As the name implies, the basic units of this method
are trees, and it utilises a combination of manipulating the training cases together
with introducing an additional element of randomness. To be specific, a number of
trees are grown on bootstrap samples of all available cases as in bagging. However,
only a random selection of available features is used for each node within each tree
so that an element of random searching in the feature space is introduced. A subject
is classified according to the majority vote across all trees. Thus, random forests are a
combination of tree classifications where each tree depends on the values of a random
vector sampled independently and with the same distribution for all trees in the forest
(Breiman, 2001).

The random forests procedure

In detail, the standard random forest procedure takes the following steps:

• A bootstrap sample T ∗ consisting of n subjects is drawn from the original
training data T with n cases.

• For this sample T ∗, a CART is grown. However, unlike in CART, not all R
available features are used. Instead, at each node, a small number r of features is
randomly selected without replacement, and the split is based on the best of the
r variables: this is termed random feature selection. Although at each node,
different variables might be selected to be tested, the number r is held constant
during the procedure, and the default usually is the square root of the available
number of features.

• Unlike in CART, no pruning is used, and the tree is grown to its largest possible
extent. Another difference is that not every case is dropped down the tree, but
only every patient who belongs to the OOB sample T\T ∗. Hence, for growing
and classification, independent samples are used in the generation of a single tree.

• These are repeated to grow a pre-specified number of trees. For classification,
the majority vote over all trees in the resulting forest is used.
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Figure 9 Accuracy of the bagging procedure in the training data (solid bullets), temporal
(open diamonds) and external (open triangles) validation data. As basic algorithms
maximal-sized classification trees were grown. The number of bootstrap samples
varied from 10 to 100

The error fraction of the resulting forest has been shown to depend mainly on the
correlation between any two trees in the forest: Increasing the correlation also increases
the error fraction. Naturally, the error fraction hinges upon the error fractions of every
individual tree in the forest. Reducing the number r of variables selected at each node
reduces both the correlation and the strength of accuracy. Hence, although the default
setting for r is the square root of the number of available predictors, varying this
number is encouraged, and the range of optimal values is usually quite wide.

The second parameter that needs to be set in advance to grow a random forest is
the number of trees included. No clear recommendations have been given; however,
the more trees are grown, the more stable the results will be, and the upper limit seems
to be merely a computational issue, as it has been observed that random forests do not
generally overfit asmore trees are added (Breiman, 2001). Furthermore and in contrast
to boosting, Bayes consistency has recently been demonstrated for a simple version of
random forests (Breiman, 2004).

A special feature of random forests is that the individual importances of the
predictive variables in the final model can be estimated. Two importance measures
have received attention because they are implemented in standard software for random
forests; a detailed discussion of these and other importance measures has been given
by us (Ziegler et al., 2007). One is the permutation importance, where the first step is
to calculate the number of correct classifications of the OOB subjects in every single
tree grown in the forest. Secondly, the values of the jth feature are randomly permuted
in the OOB subjects, and these subjects are then re-classified using these new values.
Finally, the number of correct classifications with the permuted values is compared
with the number of correct classifications in the original data. The difference between
these fractions, averaged over all trees in the random forest, gives the permutation
importance for the jth variable. The second importance measure is a generalisation of
the Gini index from a single tree to a forest. The basic idea of this importance measure
is to contrast the impurity of a tree with and without the feature of interest being
included in the tree; for details, see Ziegler et al. (2007). If the estimated importance of
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all features can be assumed to be independent from tree to tree, a standard error of the
importance can be computed in a usual way so that asymptotic confidence intervals
assuming normality can be calculated (Lin et al., 2004).

Importance measures are useful for feature selection (Ziegler et al., 2007).
If the number of variables is large, forests can be run once with all features, then
run again using only the most important ones from the first run (Diaz-Uriarte and
Alvarez de Andres, 2006). However, the importance measures may be biased when
different features have different scales or different numbers of categories. This bias
can be avoided by using subsampling without replacement instead of bootstrapping
(Strobl et al., 2007).

Another option available with random forests for interrogating the data is the
calculation of proximities between subjects. For this, after a tree is grown, every subject
is dropped down each tree. Then, each pair of subjects is compared with regard to their
final stopping point. That is, if they are classified into the same final node in a single
tree of the forest, the proximity between them is increased by one. The resulting values
could, in principle, be used to replace missing data and to identify outliers.

As in bagging, there is no need for cross-validating random forests to get a more
unbiased estimate of the generalisation error, as every included tree is tested in the
independent OOB subjects.

Example for random forests

For our stroke example data, we utilised the R implementation RandomForest by
Liaw and Wiener (2007). The syntax is similar to the syntax described above. To be
specific, random forests are trained by:

rf.train <−randomForest(train.x, train.y, ntree = 500, mtry = 11,

importance = TRUE)

As before, train.x and the vector train.y denote the training data. ntree is the
number of trees to be grown, mtry gives the number of features in every split.
Finally, importance = TRUE sets the output of the Gini importance which may be
displayed via rf.train$importance. To apply the estimated random forests to the
test data, both the features and the outcome for the test data are utilised:

rf.test <−randomForest(train.x, train.y, xtest = test.x,

ytest = test.y,

ntree = 500, mtry = 11, importance = TRUE)

We varied the number of variables to be selected at each node in a single tree between
2 and 11. As the error fractions in the training data were not greatly affected by this,
the forest resulting from the default value of

√
38 ≈ 7 is presented. As an additional

option, equal weight was given to the two patient groups. The number of trees to be
grown was set to 500, and the importance of each variable was calculated. Figure 10
shows the importance of the ten most important predictors. In detail, the importance
was calculated for the entire data set as well as separately within patients who
were completely restituted or incompletely restituted. Interestingly, the ten important
variables depicted in Figure 10 for random forests are very similar to the variables
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identified with logistic regression. The resulting error fractions in the training data as
well as from applying the developed forest to temporal and external validation data
are given in Table 3.

Figure 10 Importance of the ten most important variables in the random forest grown in the
stroke training data. x1 = Age, x2 = Rankin scale, x3 = NIH-SS total score,
x4 = Right arm paresis, x5 = Fever, x6 = Left arm paresis, x7 = Left leg paresis,
x8 = Right leg paresis, x9 = Neurological complications, x10 = NIH-SS
questions. A random selection of

√
38 ≈ 7 variables was used at each node, and a

number of 500 trees were grown in total. Solid bullets represent mean importance
for overall classification, open diamonds and triangles stand for importance for
predicting functional independence and dependence or mortality, respectively

6 Comparison of learning machines

In the previous sections we have described the theoretical background of
different learning machines as well as their application to clinical prognostic data.
However, so far we have postponed a direct comparison of the machines against
each other. How this aspect of prognostic modelling building is undertaken differs
sharply in the clinical context from how it is usually handled in the machine learning
community, for four reasons. First, with clinical datawedonot usually have a sufficient
understanding of the distributional structure of the data to enable theory-based
performance comparisons or useful generation of synthetic data. Second, the sample
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sizes, especially in the case, or at-risk group is often rather small. Hence we must more
carefully consider sample variancesof the error fraction estimates.Third, it is important
to account for the correlation between error fraction estimates, as these are built using
paired binomial outcomes. Finally, fourth, for accurate machine comparisons with
medical data we find that different criteria should be considered, criteria distinct from
those usually considered in the machine learning setting:

1 Accuracy of the model in temporal and external validation data

2 Ease of application of the algorithm and computational burden

3 Clinical interpretability of the resulting model.

These criteria will be discussed in the following sections.

6.1 Accuracy of predictions

Themost important questions are: Do the error fractions between twomachines differ
in a relevant magnitude and/or significantly from one another? As explained by Hand
(2006), one cannot expect a pronounced superiority of a highly sophisticated method.
Simple methods are often equally effective or even superior in classifying new data
points.

For statistical analysis, one has to note that in practice different machines are
built on data from the same patients (Newcombe, 1998). In addition, as mentioned
above, the predictions from two machines for the same patient can be expected to be
correlated, i.e., outcomes for pairedmachines fit thematched pair design. Therefore, in
classification problems, a significance test for differences in error fractions, sensitivity
or specificity between two machines A and B can be based on McNemar’s test.
Tobe specific,with the notation fromTable 2 the null hypothesisH0: δ = q12 − q21 = 0
is tested against the alternative H1: δ 
= 0.

Table 2 Comparison of observed error frequencies (theoretical fractions in parenthesis) for
two dependent machines

Machine B

Correct False Total

Machine A Correct a (q11) b (q12) a + b (πA)
False c (q21) d (q22) c + d (1 − πA)
Total a + c (πB) b + d (1 − πB) n (1)

Tango (1999) has derived a simple asymptotic (1 − α)-confidence interval for the
difference δ that has good power and coverage probabilities. It is given by

b − c − nδ√
n(2q̂21 + δ(1 − δ))

= ±zα
2

with zα
2
denoting the upper α

2 -quantile of the normal distribution. Here, q̂21 is given
by the maximum likelihood estimator for q21:

q̂21 =

√
(−b − c + (2n − b + c)δ)2 − 8n(−cδ(1 − δ)) − [ − b − c + (2n − b + c)δ

]
4n

.
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Alternatives include the recently proposed confidence interval by Zhou and Qin (2005,
2007); for an overview see Newcombe (1998). In our example, we employed Tango’s
method for computing confidence intervals for correlated outcomes.

For a comparison of error fractions between independent data sets, for example
between data sets for training, temporal or external validation, tests and confidence
intervalswith improvedpowerandcoveragehavebeendeveloped recently (Newcombe,
1999; Brown andLi, 2005). Specifically, we employed the improved confidence interval
described as method 10 (Newcombe, 1999) for comparing independent samples.

One aspect in comparing classifications from different machines deserves specific
attention. If various machines are trained on training data, their prediction accuracy
can be compared in a fair manner by applying all machines to the validation data.
In this case, the above described procedures lead to valid estimates. If, however,
machines are trained and compared on the same single data set, prediction accuracy
may vary systematically depending on the way machines are trained. For example, the
logistic regression and support vector machines utilise all available data in the model
building step and are more prone to overfitting if appropriate adjustments are not
carried out. Thus, error fractions may be underestimated.

In comparison, ensemble methods use the available data only partly and rarely
overfit. Therefore, error fractions are more reliable, and thus, unfortunately, often
higher. To be specific, the prediction of a single patient in algorithms that utilise
bootstrap samples is based on only about two thirds of the entire training data set.
By contrast, even when a 10-fold cross validation is employed for the other algorithms,
90% of the training data is used in the prediction of a single patient. To overcome
this source of bias in comparing prediction accuracies, in principle, bootstrap samples
could be drawn in the first step. In the second step, all machines to be compared could
be trained on the bootstrap samples and tested on the out of bag samples. This gives
paired classification results and bootstrap sample confidence intervals for allmachines.
These could then be compared by appropriate averaging across all bootstrap samples.
In our own analyses, we did not follow this approach for the training data due to
CPU – time restrictions.

For a statistical comparison of any pair of two machines, exact McNemar’s
tests were calculated. In addition, 95%-confidence intervals for the difference
in error fractions according to Tango (1998) were determined utilising an R
implementation (http://www.stat.ufl.edu/∼aa/cda/R/matched/R2_matched). As an
example, the difference in error fractions and the respective confidence intervals
comparing every learningmachinewith the logistic regression are depicted inFigure 11.
It can be seen that the accuracy of CART, bagging, and random forests is significantly
worse than the logistic regression in the temporal validation data. In contrast, logistic
regression is worse than the SVMs in the cross-validated training data, but no
difference is visible with regard to temporally or externally validated error fractions.
No significant differences are detected between logistic regression and boosting
although error fractions are higher for boosting in the cross-validated and temporally
validated data sets.

Example for comparison of learning machines

Table 3 shows a summary of the accuracy fractions of all the learning machines
described above including the original logistic regression. To give a more precise
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picture, fractions within all patients as well as within completely restituted
(specificity) and incompletely restituted or deceased (sensitivity) cases are presented.
For all machines, fractions in the training data set, in the temporal and the external
validation data set are shown as well. In addition, internally validated fractions are
given for logistic regression, CART, and boosting.

Figure 11 Difference in error fractions in internally validated training (diamonds), temporal
(squares), and external (triangles) validation data compared with logistic
regression. Mean differences in error fractions and 95% confidence intervals
according to Tango (1998) are presented

As expected, for each learning machine, fractions of overall accuracy drop when
moving from training fractions via internal and temporal to external validation
fractions. However, each machine was able to correctly classify more than 70% of
the patients even in the external validation sample; logistic regression, SVM, bagging
and boosting even exceeded an accuracy fraction of 75%. A further consistent trend
is that the externally validated specificity was always much higher than the respective
sensitivity, indicating that fully recovered patients were easier to classify.

Comparing themachineswith each other, it seems thatwhereas in the training data,
SVMs fared best, the picture is different in both validation data sets: Here, logistic
regression and SVM yield the highest accuracy fractions. The complete comparison of
the error fractions between the machines together with 95%-confidence intervals for
the differences are given in Table 4 for the training and in Table 5 for the validation
data.
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Table 3 Resulting accuracy fractions in the stroke data
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Table 4 Difference in overall accuracy fractions in the stroke data. Shown are the differences in 
accuracy of machine on the left minus on the top in the training with respective 95% 
confidence intervals
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Table 5 Difference in overall accuracy fractions in the stroke data. Shown are differences in 
overall accuracy in the temporal (upper triangle, difference is accuracy of machine on 
the left minus on the top) and external validation data (lower triangle, difference is 
accuracy of machine on the top minus machine on the left) with respective 95% 
confidence intervals
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6.2 Ease of application and computational time

The ease of applying a specific algorithm depends mainly on the availability of
implementations and on the number of parameters that need to be sensibly set.
As described in the context of our example, all of the described learning machines
have been implemented in the software package R (R Development Core Team, 2005)
which is available under the GNU public license. Even though the logistic regression
modelling in our example was performed using SAS 8.02, R implementations are
available, too.

In contrast, the difficulty with regard to reasonably setting parameters in advance
differs widely across the different machines. For growing classification trees with
CART, only the decision on the splitting criterion and on whether or not to prune
the tree needs to be made. Similarly easy is the employment of the ensemble methods
described above: For bagging, only the base learning machines and the number
of bootstrap samples require selection. Because of this ease of use and accuracy,
(Breiman, 1996) stated that bagging “goes a way toward making a silk purse out of
a sow’s ear, especially if the sow’s ear is twitchy”. The same holds for boosting: once
the base classifier is chosen, the action of the boosting algorithm is mainly determined
by the cost function, e.g., by utilising AdaBoost vs. LogitBoost. In random forests,
the free parameters are again the number of machines and, in addition, the number of
variables to be selected at every node. Importantly, our example underscores the fact
that these algorithms are not overly sensitive to variations in the parameter values,
number of machines, or number of variables.

The only learning machine described which requires an intensive tuning effort
are the SVMs. Here, applying different kernel functions can lead to drastically
different accuracy fractions. In addition, each kernel function necessitates the optimal
adjustment of several parameters. In a similar way, the logistic regression approach
utilised before required several parameters, for instance, algorithm and criteria for
selecting variables and handling of interactions (Harrell et al., 1996; Royston and
Sauerbrei, 2004).

ConcerningCPU time,most of the learningmachines donot differ remarkablywith
current computational capacities. Theonly exceptionswere theSVMs, forwhichhigher
computational requirements have also been described before (Freund and Schapire,
1999). In summary, logistic regression and SVM are rather difficult to employ since
they require significant tuning; other learning machines do not require such effort at
CPU–time, or deeper mathematical preliminaries.

6.3 Clinical interpretability

The importance of this criterion lies in the experience that a proposed predictive model
needs to be clinically meaningful in order to be widely accepted in practice. More
specifically, factors that may affect the clinical credibility are as follows (Wyatt and
Altman, 1995):

• For inclusion in the model, all data that are clinically relevant have been tested.

• All the data that are included in the final model are easy to obtain reliably in
clinical practice.

• For continuous variables, arbitrary thresholds are avoided.
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• The structure of the model is transparent, and the resulting predictions make
sense. Phrased differently, the model is not just a ‘black box’.

• It is easy to calculate the model’s prediction for a specific patient.

The first bullet is not specific to machine learning algorithms employed but refers to
the design of the data collection in advance. The second includes both the kind and the
number of variables being included in the final model. Whereas the type of variable
should be already determined in the first step and does not depend on the modelling
algorithm, the number of variables can differ widely. Furthermore, it often is desirable
to select variables and thus generate a parsimonious prediction model. In CART,
the selection of important variables is clearly visible in the resulting tree. However,
variables selected higher in the tree are not necessarily more important overall.
More complicated but still possible is a variable selection in random forests:
By determining the importance of every included variable, it is feasible to select the
most important variables and re-build a random forest using only these. The option
of variable selection also is an inherent feature in logistic regression modelling.
However, the importance of the variables can only be assessed by leaving themout – or
plugging them in – during themodelling process. Approaches that utilise this technique
have also been proposed for SVMs (see, e.g., Guyon and Elisseeff, 2003). However,
there is a clear need for improvements. In contrast, for bagging and boosting, we
are not aware of any published variable selection approaches though extensions for
appropriate base learners seem to be quite obvious.

The handling of continuous variables, bullet 3, depends on the learning algorithm:
While logistic regression and SVM make use of the entire quantitative information,
CART explicitly does not. Thus, for all ensemble methods based on trees, continuous
variables are split optimally with regard to the reduction of purity, e.g., deviance at
a specific node. Hence, the threshold might be statistically sensible but may appear
clinically arbitrary.

In our view, the most important factors for clinical credibility are bullets 4 and 5
relating to the transparency and intuitionof the resultingmodel. For logistic regression,
the prediction model is expressed in a closed formula including only the relevant
variables and calculating the predicted outcome. Hence, it is clearly visible which
variables contribute in what way to the prediction. It is therefore easy to calculate
the predicted outcome for a specific patient. Similarly, a CART generated tree is
relatively easy to interpret. The results can be displayed in a flow chart as in Figure 4.
The inherent ‘logic’ in the tree is apparent, and a single patient can be classified very
easily by dropping the patient’s data vector down the tree. The situation is different
for SVMs and ensemble methods.

Although the functioning of bagging, boosting, and random forest might
be transparent, the resultingmodelmost likely is not, as the classification can no longer
be summarised in a simple and interpretable structure.As a consequence, the prediction
model rather resembles a ‘black box’ where the “internal workings are not readily
inspected or understood by a user or system developer” (Hart andWyatt, 1990, p.229).
Implications of this include that clinical explanations are limited and little insight is
gained into which variables are important for the prediction.

One possible strategy to recover interpretability lies in the sensible combination of
methods. For example, one might use random forest on a full set of features to identify
the most important variables and then send this small list to a logistic regressionmodel
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which then lends itself readily to interpretability (Schwarz et al., 2007). In detail, the
following strategy seems to be reasonable (see, e.g., Ziegler et al., 2007):

• Random forests are grown on the data using all available predictive variables
with an implementation of its variable importance feature.

• A smaller number of the five or ten most important variables are selected.
Random forests are grown on this subsample of features.

• The prediction accuracy is compared using the confidence intervals for
dependent samples (Newcombe, 1998; Tango, 1999; Zhou and Qin, 2005, 2007).

The strategy is, therefore, to acquire good prediction in the first sequence with all
available features, and then to look for structure in reducedmodels. There are limits, of
course, in that the relative size of a data setmay not generate sufficient statistical power
to distinguish any two models, and an enormous initial variable list may make nearly
invisible any single useful feature. Furthermore, this stepwise selection process might
result in bias and/or overfitting. On the other hand, the strategy of good prediction
first can be simplified by using an ensemble approach to a collection of diverse engines:
we need not confine our prediction approach to any single machine.

7 Discussion

Over the last several years, many new algorithms have been suggested by the
machine learning community that offer interesting alternatives for the development
of multivariate prognostic models. One important difference to the classical logistic
regression is that the latter is based on regularity or distributional conditions that
may not hold, or, more likely, will simply not be testable. In addition, the classical
methodmay not lend itself easily to a systematic inclusion and analysis of higher order
terms or interactions among the features. In contrast, the machines studied here are
intensely nonparametric, meaning that no assumptions are made at the outset about
the structure of the data, or the correlation structure among the features. Put simply,
it can be said that these methods simply do not see the likelihood function at all.

In comparing accuracy across different machines we saw that logistic regression,
bagging, boosting, and random forests fared quite similarly in the training data with
the SVMs being significantly better. However, it has to be kept in mind that we utilised
cross-validated error fractions for logistic regression and boosting, and that bagging
and random forests incorporate an estimation of internally validated accuracy as part
of the methodology. In contrast, the original estimated training rates were used for
SVMs. Hence, the presumably higher accuracy of the SMVs might be explained by
overfitting.

In the temporal validation data, the lowest error fractions were obtained using
logistic regression. The worst accuracy were found for CART, bagging, and random
forests. Interestingly, no significant differences were detected with regard to accuracy
rates in the external validation data set. However, both CART and random forests
yielded higher error fractions than the other machines, while the other algorithms
seem to be comparable. In addition, a remarkable difference between sensitivity and
specificity is obvious for most machines with the specificity being much higher in
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temporal and external validation data, this difference is less than 20% for logistic
regression and SVMs.

To summarise, with regard to the accuracy of the model in the German Stroke
data no learning machine among those studied here strictly outperformed our original
logistic regression approach (König et al., 2007). The best results overall were obtained
with the logistic regression and the SVMs.

Our experience has shown that the price to be paid for this high accuracy is the
user-parameter tuning effort and computational burden. To be specific, the logistic
regression schemeusedherewasquite carefully craftedmanually, and tuned specifically
for this data set. Similarly, the SVMs were fine-tuned for these models with different
kernel functions. However, this was possible automatically by using the provided
tuning function. Hence, it does not necessarily take a trained biometrician to achieve
similar quality as with logistic regression. The separate other learning machines we
employed were all rather analytically generic within their own classes.

Thus, from another perspective the conclusion might be drawn that a refined
classicalmodellingprocedureultimatelybuys little appreciableperformanceadvantage
in terms of prediction error, when compared with the newer prediction engines.

In addition to being correct and easy to develop, a prognostic model needs to be
clinically interpretable in order to be of practical use. One important factor in this is
the transparency of the final model. Here, logistic regression models fare quite well,
although maybe classification trees from CART are even more easy to understand.
In contrast, prediction models from SVMs and ensemble methods are difficult to
interpret.

Hence, from this data set, and more broadly from our general experience with
using the prediction engines on other data, a classical prediction method such as
logistic regression offers the clinician this single clear advantage: it is interpretable
via the coefficients in the regression model. As a consequence, it seems that the
choice for the practitioner mostly is between simple interpretability on the one hand
and simple application with no assumptions and low error rates on the other hand.
However, we suggest that these requirements are better understood not as competing
for the same labor or intellectual space, but as goals thatmight be achieved in sequence.
Sensibly combining the available methods as described above might yield both, low
prediction error rates and transparency of the final model.

In our experience, this sequential procedure does not lead to a long cycle of testing,
training or tuning, as the few most important variables selected by random forests
typicallydoaswell as the complete variable list, andby focusingon the top fewvariables
we have acquired a useful degree of interpretability.

As the main focus of this tutorial was on the detailed explanation of the
different methods, some issues could not be addressed. Firstly, we used only
complete case records. However, we note that the random forest procedure has
options for imputing missing components of a data vector (Liaw and Wiener, 2007).
Furthermore, approaches for dealing with missing data have been developed for
SVMs (Tsuda et al., 2003) which were not be studied here. Secondly, we have to
emphasise that our example data set wasmore or less balanced with regard to outcome
groups. Using unbalanced data – those having sharply unequal group sizes –, most
algorithms by default aim atminimising the overall error fraction which will inevitably
mean a minimisation of error fraction in the larger outcome group at the expense
of the error fraction for the smaller group. If the aim is to yield similar sensitivity



332 I.R. König et al.

and specificity, either additional weight parameters or down-sampling have to be
employed. Thirdly, we have only considered binary outcome data. Formost machines,
generalisations to multiclass and linear regression problems are straightforward.
Finally, we did not investigate the issue of sample size. Thus, we are not able to answer
what the required sample sizes for different methods are. However, it has been pointed
out that learningmachines arebetter able todealwith smaller sample sizes thanclassical
regression models.

Having explained and applied both classical algorithms and learning machines to
our data, we are still in search for the optimal machine. Also, having found a good
performance of some of the learning machines, we still wonder why they do as well
as they do? Further, what really lurks inside these black boxes? These questions have
become a research topic in itself, and for the boosting and random forests methods this
is an active area. No doubt, answers will be forthcoming, and then newmethods based
on the insights gained will be introduced. Meanwhile we argue that a patient-centered
approach to prognosis must, first and foremost, make sound predictions, however they
are generated. We do not believe any class of patients are well-served if the model is
‘clinically sensible’ and easily understood, but performs less well than a more complex
learning machine.
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Appendix A: List of investigated variables

Table 6 includes all variables that were available in both the training and the test
data set. The test data set contains centres for both temporal and external validation.

Appendix B: Some vector space details and mathematical details for support
vector machines

B.1: Equation for a plane

The equation for a hyperplaneL inR
n which is orthogonal, denoted:⊥ to some vector

β may be derived as follows:

• Let the vectors x1, x2 be on L. Then x1 − x2 is a line segment on L.
• The required condition for β being orthogonal to L is then: β′(x1 − x2) = 0

• Fix x2 and let x1 = x vary. Then the equation for x on L is given by

0 = β′(x − x2) = β′x − β′x2 =: β′x + β0,

where β0 = −β′x2 ∈ R is scalar.

B.2: Distance from a point to a plane

Figure 12 illustrates the problem. β is a vector, and x ∈ R
n. We aim at finding x0 on

the plane L so that the line segment x − x0 parallels β.
The angle ϑ between any two vectors x and y is given by

cos(ϑ) =
x′y

‖x‖ · ‖y‖ ,

where ‖x‖2 = x′x.
The line segment x − x0 needs to be parallel to β, yielding ϑ = ϑ

(
β, x − x0

)
= 0.

Thus, cos(ϑ) = 1. This leads to

1 =
β′(x − x0)

‖β‖‖x − x0‖

The distance from x to x0 which is on L is therefore given by

‖x − x0‖ =
1

‖β‖
(
β′x + β0

)

Let f(x) = β′x + β0. If ‖β‖ = 1, then f(x) is the distance from the pointx to the plane
L since x0 is on L. If a point x0 is on L, then the equation β′x0 + β0 = 0 is fulfilled.
If, however, x0 is C distant from L, then β′x0 + β0 − C = 0 (or β′x0 + β0 + C = 0).
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Table 6 Variables considered in test and training data

Assessment time Variable

Demographics Age
Gender
Smoking status within last five years

History Prior stroke
Prior peripheral arterial disease
Arterial hypertension (elevated blood pressure above
160/95mmHg or antihypertensive medication)
Diabetes mellitus (elevated blood glucose or elevated
HbA1c or antidiabetic medication)

At admission Overall functional impairments rated on Modified Rankin Scale
Baseline neurological impairments rated on the National
Institute of Health Stroke Scale with:
Total score
Level of consciousness
Questions
Commands
Best gaze
Visual
Facial palsy
Left arm paresis
Right arm paresis
Left leg paresis
Right leg paresis
Limb ataxia
Sensory
Best language
Dysarthria
Extinction and inattention

Within 72 Lowering of elevated blood glucose
hours after Fever (rectal temperature rise to >38)
admission Neurological complications: recurrent cerebral ischemia,

symptomatic parenchymal bleeding, or epileptic seizure
Other medical complications: hypertensive crisis,
cardical arrhythmia, lung edema/cardiac failure, pneumonia,
venous thrombosis, pulmonary embolism, or peripheral bleeding
Localisation of infarction in cerebral imaging with:
Anterior cerebral artery
Middle cerebral artery
Lenticulostriate arteries
Thalamic arteries
Posterior cerebral artery
Cerebellar arteries
Brain stem arteries
Borderline middle/posterior cerebral arteries
Borderline anterior/middle cerebral arteries
Long perforating arteries
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B.3: Restating the optimisation problem in the separable case

We show that the optimisation problem of equation (1) for the separable case can be
restated as the solution of:

min
β,β0

‖β‖

subject to yi(x′β + β0) ≥ C, i = 1, . . . , n

In this restatement of equation (1), the norm constraint onβ can be dropped by setting
C = 1/‖β‖. This yields a convex optimisation problem, and the solution is outlined in
Appendix C.

Figure 12 The linear algebra of an affine hyperplane L. The point x0 on the hyperplane L is
found in such a way that the segment x − x0 parallels β

The proof of the restatement is as follows: We want f(x) = β′x + β0 such that for
each pair of observations (yi, xi):

β′xi + β0 ≥ C

with the constraint ‖β‖ = 1 and a constant C to be maximised. For this C, every data
point xi is at least C distant from the hyperplane so that

β′xi + β0 ≥ C or β′xi + β0 ≤ −C.

This is exactly yi

(
β′xi + β0

) ≥ C for yi = ±1.
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Suppose we let ‖β‖ vary. Then the required equation is

yi

(
β′

‖β‖xi − β′

‖β‖x2

)
≥ C

since β0 = β′x2 from above.
This equation is true for all β so that we can set ‖β‖ = 1

C , and we get yi

(
β′xi +

β0
) ≥ 1, where max C ⇔ min ‖β‖. In the separable case, the equation for a SVM is

just min ‖β‖ for some β, β0 such that yi(β′xi + β0) ≥ 1.

B.4: Solving the maximisation problem in the non-separable case

As in the separable case, the norm constraint on β can be eliminated by letting
C = 1/‖β‖, so that we aim at finding β0 and β such that

min
β,β0

‖β‖
subject to yi(x′β + β0) ≥ 1 − ξi, (8)

and to ξi ≥ 0,
n∑

i=1

ξi ≤ γ, i = 1, . . . , n.

The solution for the optimisation problem (8) can be obtained by a quadratic
programming algorithm using Lagrange multipliers. The Lagrange primal function is
given by

LP =
1
2
‖β‖2 + γ

n∑
i=1

ξi −
n∑

i=1

αi(yi(x′β + β0) − (1 − ξi)) −
n∑

i=1

δiξi (9)

In equation (9), the first condition replaces the constant, the second the condition of
the hyperplane, and the third the positivity of the slack variables. If equation (9) is
minimised w.r.t. β0, β and ξi, one obtains

β =
n∑

i=1

αiyixi,

0 =
n∑

i=1

yi,

αi = γ − δi, for all i

αi ≥ 0, δi ≥ 0, ξi ≥ 0, for all i

after setting the derivatives to 0. The important simplification can now be carried out.
It is the step from the Lagrange primal function to its dual which gives a lower bound
on equation (9):

LD =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
′
ixj . (10)
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Equation (10) is maximised subject to 0 ≤ αi ≤ γ and
∑n

i=1 αiyi = 0.
All restraints together with the Karush-Kuhn-Tucker conditions of optimisation
(Kuhn and Tucker, 1951) lead to the solution for β:

β̂ =
n∑

i=1

α̂iyixi.

α̂i are only nonzero for those observations i for which the constraints yi

(
x′

iβ + β0
) ≥

1 − ξi are exactly met. The observations with positive α̂i are called the support vectors.


